
The Basics of Secure Software Development. Page 1

The Basics of Secure Software

Development

The Basics of Secure Software Development. Page 2

Content

Chapter 1: Introduction 3

Chapter 2: Understanding SDLC and SSDLC 6

Chapter 3: How to be successful in Secure SDLC 16

Chapter 4: Common software vulnerabilities discussed 23

Your Secure Software Development Partner! 28

Glossary 29

References 33

The Basics of Secure Software Development. Page 3

Chapter 1 - Introduction

What did we find out?

Condition Zebra has been offering cybersecurity solutions since 2007. It's been 15 years of

providing services for SMEs, companies, the government and financial sectors.

Our security engineers usually conduct Vulnerability Assessments and Penetration Testing

(VAPT30) for web or mobile applications. What we found is that the majority of software

applications in production have one or more security vulnerabilities.

This experience has propelled us to offer a Secure Software Development Lifecycle

(SSDLC28) service for companies looking to develop software that incorporates security

aspects in the development process.

The cost of fixing the vulnerabilities in older software is sometimes up to 20–100 times greater.

So it makes sense to use SSDLC when developing software to save costs in the long term,

avoid security vulnerabilities, and build more secure software.

SolarWinds Hack

In early 2020, the SolarWinds attack happened1, where hackers installed malicious code into

the company's Orion software. This one vulnerability in the software has a destructive effect;

every company or organisation using Orion was left vulnerable, including Microsoft, Cisco,

FireEye, Intel, NATO, the UK Government, European Parliament, and multiple US federal

agencies.

So what went wrong in the case of the SolarWinds hack?

An answer might be traced back to a software vulnerability where hackers successfully

compromised the Orion IT monitoring platform, where the аttасkеr install bасkdооr4 into the

networks of some 40 companies.

Therefore, the practice of Secure Software Development (SSD) is more needed than ever

because of the rising cyber incidents affecting software applications on a global scale.

The Basics of Secure Software Development. Page 4

Why design security from the start?

SSD (Secure Software Development) simply means producing software with security in mind

from the ground up. By embedding security practices (such as Static application security

testing (SAST)24, Dynamic application security testing (DAST)9, Secure code reviews25, etc)

at each stage of the Software Development Lifecycle (SDLC), the following benefits can be

achieved:

1) Software is more secure

By focusing on security2 throughout the entire software development lifecycle results in software

that is more secure than ever.

2) Demonstrating a continuous commitment to security

The objective is to give all the stakeholders who have an interest3 in application security the

education, information, and tools they need to succeed.

This will enable all interested parties, such as project managers, development managers,

application developers, server configuration, release management, quality assurance teams,

and others, to become committed and aware of security considerations.

"Organizations should be aware of the destructive "domino effect"

that one vulnerability can have on software across the globe in the case
of SolarWinds attack".

- The 12th Annual State of Software Security (SOSS) report by Veracode

The Basics of Secure Software Development. Page 5

3) Identify potential flaws early in the development process

In a software development process, consider designing security from the start. This will help

detect security flaws early, which will reduce business risks for the organization2.

A few of the security activities that can help with this include:

a) Threat modelling is a step that can help to identify possible security issues early in the

development stage.

b) Secure Code Reviews25 are another step that can help find security flaws in the source

code.

c) Security testing, including SAST24 & DAST9 and Penetration Testing22, is critical.

Both of these security activities are used to validate that the deployment is secure.

4) Reduce development costs

Fix security vulnerabilities in the initial stage than in later stages of the SDLC to reduce overall

costs of software development.

The Basics of Secure Software Development. Page 6

Chapter 2: Understanding SDLC and SSDLC

What is SDLC?

The Software Development Lifecycle (SDLC) is the usual process used by organisations to build

software from start to finish. SDLC models include waterfall38, iterative14, and agile1 processes.

"Lifecycle" means the process is continuous. Each development lifecycle phase has its own

specific tasks that will be carried over into the next stage.

The Basics of Secure Software Development. Page 7

Below is the general model for the SDLC30 process:

In a standard SDLC, below is the phases:

1) Planning: During this phase of the SDLC, various stakeholders from management,

development teams, design teams, and any other relevant teams will plan, discuss, and define

the goals and requirements for the software projects.

2) Design: In this phase, developers and other relevant teams will study the requirements and

develop the design blueprints of the software.

3) Development: During this phase, developers begin to build the software.

4) Testing: The testing phase is done for quality assurance purposes and to ensure there are no

significant code errors in the software.

5) Release: In the release phase, the software is launched to the public and can be used by

users.

6) Evolution: In this phase, the developers maintain the usability of the software and provide

support to fix minor issues.

The Basics of Secure Software Development. Page 8

Secure SDLC explained

In the planning phase of normal SDLC, there are no steps to discover and mitigate security

threats. However, the only security-related task is in the testing phase, which results in finding

security flaws too late or not at all3.

Then, with time, all the parties involved in the software development process started to integrate

security activities to easily detect security vulnerabilities for each phase, ensuring the end

products would be less prone to errors and security risks. This ensures the quality, correctness,

and security of the software product being built.

A Secure Software Development Lifecycle (SSDLC) is a methodology for building software with

an emphasis on security elements in each stage of the Software Development Lifecycle

(SDLC).

The SSDLC aims to produce high-quality software that is secure and meets customer

expectations by using a systematic process that aims to build security at the start11 by adopting,

“Shift-Left26” mentality.

"Shift-Left” mentality: In the software development lifecycle, this refers to moving
towards the planning and design phase at the earliest stages.

The Basics of Secure Software Development. Page 9

The Secure SDLC has frameworks and standards2 based on OWASP18 that can aid the secure

software development process, such as IS0 2703413, BSIMM3 (Building Security in Maturity

Model), and OWASP SAMM19 (Software Assurance Maturity Model by OWASP).

The Open Web Application Security Project (OWASP) is an international
non-profit organization dedicated to web application security.

OWASP SAMM

Software developers may use OWASP SAMM (Software Assurance Maturity Model)4 to analyze

and improve the current secure development lifecycle process.

There are 5 phases inside SAMM, with 3 security practices for each phase, which makes up 15

security practices that are helpful for the SSDLC process.

1) Governance: focuses on the processes and activities that an organisation uses to manage

software development. This includes cross-functional groups involved in the development and

business processes established at the organisation level.

● Strategy & Metrics

● Policy & Compliance

● Education & Guidance

2) Design: focuses on the processes and activities related to the design aspects of creating

software in a development project. This usually includes requirements gathering, high-level

architecture specification, detailed design, identifying and mapping threat vectors and

protections in place.

● Threat Assessment

● Security Requirements

● Security Architecture

3) Implementation: focuses on processes and activities related to the implementation aspects of

building and deploying software components together with their related defects. The goal is to

release software that works as expected with minimum defects.

● Secure Build

● Secure Deployment

● Defect Management

The Basics of Secure Software Development. Page 10

4) Verification: focuses on processes and activities related to the verification aspects of

checking and testing artefacts produced throughout software development. This typically

includes quality assurance activities such as testing, and other review or evaluation activities.

● Architecture Assessment

● Requirements-driven Testing

● Security Testing

5) Operations: encompasses activities necessary to ensure confidentiality, integrity, and

availability are maintained through the lifetime of an app and its data.

● Incident Management

● Environment Management

● Operational Management

The Basics of Secure Software Development. Page 11

SSDLC vs. SDLC

SSDLC requires more time, work, and resources compared to the usual SDLC.

The Secure SDLC has its own specific tasks together with security tasks that will be carried over

into the next stage. The Secure SDLC process is continuous and repeatable over many different

activities in all the phases.

It’s a multifaceted approach to security as a partnership. It requires teamwork, and it’s a

constantly evolving process.

There are typically six phases to an SSDLC, as shown below:

The Basics of Secure Software Development. Page 12

1) Planning

In the planning phase, the representatives from higher management and/or business owners,

specialists, and developers will plan, discuss, and analyse the security problems and the scope

and goals of the software project.

Organizational feasibility analysis is also performed to determine whether the organization has

the available resources like budget or other constraints to conduct a successful security analysis

and design of the software project.

In the normal SDLC process, there are no steps to discover and mitigate security threats during

the planning stage.

● Security Analysis: performed to identify the possible risks connected with developing the

software. This step is subject to a continuing process to enable future modifications and

updates to the software to be done from time to time when new changes or new threats

are introduced.

● Security Training: conducted to help a non-technical individual have a better

understanding of information security elements.

The Basics of Secure Software Development. Page 13

2) Design

In the design stage, project managers, developers, and specialists will develop the blueprints for

information security and implement key security policies such as encryption and security

standards.

● Architecture Review: The developers will choose and review the right architecture for

the software development during the Architecture Review process. It's crucial to do this

properly because most vulnerabilities are introduced during this stage, and architectural

flaws are the hardest to change. Each architecture needs a deep analysis of the

technology profile and the attack surface to ensure it's not vulnerable by design.

● Threat Modelling: In the threat modelling step, the development team can work together

with security professionals to better understand and identify specific threats.

This involves understanding and identifying the specific threats by mapping the assets

and protection in place. Then they create specific controls to handle those threats. The

tools that can be helpful here are the Microsoft Threat Modelling Tool and the OWASP

Threat Dragon.

The Basics of Secure Software Development. Page 14

3) Development

The latest platform, backend technology, programming language, and techniques are already

chosen from the previous phase to ensure support for the development phase to produce high-

quality and secure code. This is where the magic happens when the development phase starts,

and developers begin to start building the software.

● Static Analysis / (SAST)27: In this activity, development teams evaluate the security

threats connected with using third-party code, such as frameworks and libraries, and

make preparations to minimise these risks. The tools that can be helpful here are static

analysis tools or other security tools recommended for applications in the software

development process.

Static application security testing (SAST) is performed without executing the
application program, but rather inspecting the source code, byte code or application
binaries for any security flaws.

4) Testing

The testing phase is done for quality assurance and to ensure there are no significant code

errors in the software.

● Code Inspection: Software source codes will be reviewed using automated and manual

ways to identify easy-to-spot code errors and critical vulnerabilities.

● Penetration Testing: Software will undergo hacking to identify and fix critical

vulnerabilities before releasing the software to the public.

Dynamic application security testing (DAST) involves conducting simulated attacks on
a running application program to analyse its reaction and discover security
vulnerabilities.

The Basics of Secure Software Development. Page 15

5) Release

In the release phase, the software is launched to the public and can be used by users.

This phase will be finished with the security configuration steps to make sure the software

operates securely when and after it is released. The objective of the Release phase and

Security Assessment activity is to achieve maximum security for software to operate in a secure

infrastructure, application, service, or system.

● Security Assessment: During this activity, developers conduct additional evaluation and

validation testing on the whole software project to ensure the software is ready for

release. Attack Surface Reduction steps will be conducted here to detect vulnerabilities

to external attacks and diminish the software's attack surface.

6) Evolution

This is the most important phase because today’s software applications need constant

monitoring, testing, modification, updating, maintenance, and support.

In this phase, the developers maintain the usability of the software and provide support to fix

minor issues. The evolution phase and maintenance and support activities occur together.

● Maintenance and support: The battle for a stable, secure and reliable system is always

needed whereas discovering the vulnerabilities and mitigating security threats is a

constant effort to maintain security.

The Basics of Secure Software Development. Page 16

Chapter 3: How to be Successful in Secure SDLC

Nine security practises in SSDLC

There are nine components needed to implement information security in the software

development lifecycle. It’s a multifaceted approach to security as a partnership. It requires

teamwork and it’s a constantly evolving process.

1) Security Analysis

It is performed to identify the possible security risks connected with building the software and to

ensure it is built according to the current security best practices.

Risk management also begins in this phase, which identifies, assesses, and evaluates the

levels of risk an organisation is facing in terms of organisational security and organisational

information.

The analysis of relevant legal issues that could affect the design of the security solution is also

performed here.

2) Security Training

Each individual involved in the software development lifecycle will benefit from regular IT

security training. This will ensure they understand The Basics: Security 101 and the common

threats, as they constantly evolve and new things tend to come up every year.

3) Threat Modelling

In this step, it’s all about understanding the attacker's perspective and visualising all the

possible ways threats can harm the software, including internal and external threats.

This involves understanding and identifying the specific threats by mapping the assets and

protection in place. Then creating specific controls to handle those threats. The tools that can be

helpful here are the Microsoft Threat Modelling Tool and the OWASP Threat Dragon.

The Basics of Secure Software Development. Page 17

4) Architecture Review

In the design stage, it's important to ensure the right architecture is chosen for the software

development. It's crucial to do this properly because most vulnerabilities are introduced during

this stage, and architectural flaws are the hardest to change.

Each architecture needs a deep analysis of the technology profile and the attack surface to

ensure it's not vulnerable by design.

Once the architecture for the software development project is confirmed, the way to move

forward is to adhere to the best security practices and requirements. This includes choosing the

proper programming language, database environments, systems, and features according to the

current security best practices and standards.

5) Static Analysis

In the Static Analysis step, a combination of manual, static code analysis, and/or open source

analysis is used.

Manual code analysis is the manual method of examining the code of the software to identify

any logic flaws. The open-source analysis aims to avoid introducing critical vulnerabilities in the

software. It's performed with the WhiteSource, SourceClear, or Snyk tool.

In Static Code Analysis, white box security testing39 method is used to examine the source

code of the software. Here automated code scans is conducted to identify obvious issues like

programming errors, coding standards violations, undefined values, syntax violations, and

security vulnerabilities. Identify issues and remediate them as soon as possible. The tools that

can be helpful here are Veracode, Checkmarx, and Fortify.

White box security testing is the developer approach where access to the

implementation of the software and its fundamental design and framework

are available.

The Basics of Secure Software Development. Page 18

6) Code Inspection

It is done using a combination of manual/white box and automated/black box.

In the white box testing39, source code is examined manually because the automated tool will

not be able to identify logical flaws in the code.

In black box testing5, tools are used to find easy-to-spot issues such as runtime bugs.

The benefit of this type of testing is to find issues that script kiddies (amateur hackers) can

exploit. The tools that can be helpful here are ZAP, Burp, and AppScan. It's best to use a mix of

both methods for the best results possible in the code review process.

Black box security testing5 is the attacker approach where application is tested from
the outside-in, with little or no prior knowledge of the application's internal workings.

7) Penetration Testing

Penetration Testing is considered hacking like real hackers would do to find and fix

vulnerabilities before anyone else does. It’s done before releasing the software to the public and

it’s best to do in a staging environment rather than in production, where it’s more dangerous.

In these steps, there would be not many vulnerabilities, about 20-30 findings, proving that all the

initial phases in the secure SDLC is followed. The tools that can be helpful here are Burp, ZAP,

and AppScan.

The Basics of Secure Software Development. Page 19

8) Security Assessment

A security assessment is performed as a final evaluation and validation test on the software to

ensure it is ready for release.

This phase evaluates the software from all aspects to support the final release and generates

alternative solutions and fixes the final software before the release.

9) Maintenance and Support

For a period of up to 6 months, support for any changes will be provided, which also includes

the maintenance and technical support for the software.

The SSDLC steps are continuous and always evolve as new vulnerabilities are discovered in

the software.

The Basics of Secure Software Development. Page 20

Integrate the necessary security elements

In regards to using SSDLC, software developers can utilise the OWASP ASVS20 and OWASP

Proactive Controls21 to provide guidance on how to integrate the necessary security elements

into their development activities.

What is OWASP ASVS?

OWASP (The Open Web Application Security Project) and ASVS (Application Security

Verification Standard) lay the groundwork for creating secure software.

Its main purpose is to serve as a guide for setting our security requirements baseline for our

application.

How to use ASVS?

The Application Security Verification Standard is used as a blueprint to create a Secure Coding

Checklist specific to the application, platform, or organization.

Tailoring the ASVS to the specific use cases will increase the focus on the security

requirements that are most important to the projects and environments.

Application Security Verification Levels

Each software application project follows one of the levels.

ASVS Level 1 is for low assurance levels.

ASVS Level 2 is for applications that contain sensitive data that requires protection and is the

recommended level for most apps.

ASVS Level 3 is for the most critical applications—applications that perform high-value

transactions, contain sensitive medical data, or any application that requires the highest level of

trust.

The Basics of Secure Software Development. Page 21

A few categories inside ASVS. Each category has security requirements that represent the best

practices.

● Authentication2

● Access Control

● Session Management

● Input and Output

● Cryptographic

● Communications

● Data Protection

● Business Logic

● Configuration

and many others.

The Basics of Secure Software Development. Page 22

OWASP Proactive Controls

OWASP (The Open Web Application Security Project), Top 10 Proactive Controls 2018, is a

useful guide for effective security techniques which will support software developers in building

secure software.

List of proactive controls:

● Define Security Requirements

● Leverage Security Frameworks and Libraries

● Secure Database Access

● Encode and Escape Data

● Validate All Inputs

● Implement Digital Identity

● Enforce Access Controls

● Protect Data Everywhere

● Implement Security Logging and Monitoring

● Handle All Errors and Exceptions

The Basics of Secure Software Development. Page 23

Chapter 4: Common software vulnerabilities discussed

Software Developer's daily challenge is to make sure the software is secure. Before taking the
steps to secure the software, as well as user and company data against an array of
vulnerabilities, an understanding of the top 10 web application security risks5 is crucial.

Let's explore the top 10 most frequent threats for 2021.

Broken Access Control

Broken access control allows attackers to access or view sensitive data without the
authorization or permission level to do so. For example, changing the URL to access the admin
page from /user1234/info to /admin/info.

The secure software development life cycle utilizes a code review process to enforce security in
the software codes by defining user permissions and actions for each type of object that
accesses a data source using input from the user.

Cryptographic Failures

Cryptographic failures in a software application can be caused by wrong data encryption,
mishandling of cryptography keys and using old or weak cryptographic algorithms.

Cryptographic issues in an application can be avoided by using the approach below:

 Ensure that the correct data is encrypted and not leaving critical data exposed.
 Ensure proper storage and management of cryptographic keys
 Use existing encryption or hashing algorithms.

The Basics of Secure Software Development. Page 24

Injection

An injection attack allows attackers to manipulate systems by sending malicious code and
requests through user input fields. This most commonly happens using:

 SQL injection32
 Lightweight directory access protocol (LDAP15) queries
 XML path language (XPATH41) queries
 Operating system (OS) commands
 Object-relational mapping (ORM17)

Secure software development life cycle uses security controls to eliminate these types of
attacks through input validation (each input that is coming from a login screen or a search
window should be validated, filtered, and sanitized). In the validation process, define data types
and strict patterns for all string parameters. In the filtering process, special characters like the
apostrophe, asterisk or equal sign should be restricted because they can be used by hackers to
form arguments in code.

Allowing acceptable strings, and blocking everything else, will deny attackers to send malicious
code through user input fields which keeps injection attacks away.

One of the injection attacks called CRLF7 injection makes use of the HTTP11 protocol with CRLF
character sequences to signify where one header ends and another begins, and where headers
end and the website content begins. Applications susceptible to these attacks can have
malicious content injected or users redirected to a malicious location.

While CRLF injections can be used as attack vectors for cross-site scripting (XSS40) attacks,
they are not one and the same. CRLF injections can occur when an attacker forces the
application to return the CRLF sequence, plus the attacker’s supplied data as a part of the
response. That data could be an XSS attack, but not necessarily.

Cross-site scripting (XSS) is a software vulnerability usually found in Web applications.
This XSS allows online criminals to inject client-side script into pages that other users
view. The cross-site scripting vulnerability can be employed at the same time by attackers
to over-write access controls. This issue can become a significant security risk unless the
network administrator or the website owner doesn't take the necessary security means.

The Basics of Secure Software Development. Page 25

Insecure Design

Insecure design relates to the architecture flaws at the start of the software development
journey, leading to insecure software as a by-product.

This can be eliminated by adopting the "Shift-Left" mentality. In SDLC, this refers to more focus
on the planning and design phase by following secure design patterns and principles at the
earliest stages. Threat modelling can be utilized to visualize and identify potential threats in the
design phase to improve the design with security in mind.

Security Misconfiguration

Security misconfiguration in software could happen as it depends on the number of possible
features or functions a software has. The more things that need to be configured and tweaked
the easier it is to mess things up. Usually, it consists of disabled security features, debug
features enabled and improper permissions vulnerabilities6.

In most cases, security misconfiguration leads to information leakage in a web application by
which any sensitive information leak could compromise security.

Examples of information leakage include:

 A stack trace indicating application error messages in the browser when users attempt to
access a specific page.

 A detailed comment was left by a developer.
 Network configuration files that provide information about the network infrastructure

powering the application.

The Basics of Secure Software Development. Page 26

Debugging10 is a useful tool to help developers get detailed errors message to
investigate and fix issues. Typically, it is turned off by default, but in some cases,
developers forget to turn it off and leave it enabled during a long development process
in a production environment. This will pose a risk where attackers will get information
about the environment that can aid with how to compromise an application, or even an
entire server or network.

Secure software development life cycle assists in developing a standard and repeatable
process to review security settings across the entire environment to eliminate disabled security
features and improper permissions vulnerabilities.

The review of security settings should be made continuous across the entire environment so the
organization is always striving to improve its security settings and configuration for its
applications.

Vulnerable and Outdated Components

Today's modern software will not exist without using the necessary components to make it
function well. These components include popular libraries and frameworks for each
programming language such as Python23, C++6, etc.

Avoiding vulnerable and outdated components is not an easy task for most organizations.
But companies can take measures to get rid of such issues by maintaining an inventory of
components used and ensuring it is updated.

Identification and Authentication Failures

Identification and authentication2 failures happen when an authentication process in software is
broken or vulnerable8.

Secure software development life cycle has a process to create the authentication section of
software appropriately. This is achieved by including authentication checks everywhere that
allow users to access program functionality. Multifactor authentication (MFA16) is also a good
method to include in a software application for secure authentication.

Authentication: The process of authentication (or identification) of an individual is
usually based on a username and a password. This process is used to allow access to
an online location or resource to the right individual by validating the identification.

The Basics of Secure Software Development. Page 27

Software and Data Integrity Failures

Software and data integrity failures happen with the use of critical data or applications from
untrusted sources without verifying their identity7.

One of the most significant breaches of this nature is the SolarWinds Orion attack where
malicious updates were distributed to more than 18,000 organizations worldwide.

Security Logging and Monitoring Failures

Security logging and monitoring for all failed authentication, denied access and input validation
errors are important as a part of a good cybersecurity response plan. To avoid this vulnerability,
utilize automation and monitoring processes to have a constant process in place to collect logs
and also give incident alerts in the case of any breach.

Server-side Request Forgery

Server-Side Request Forgery (SSRF) allows an attacker to abuse server functionality to read or
update internal resources. This is achieved by fetching a URL to the vulnerable web application
which will often have privileges to read, write or import data. The application will be forced to
send requests to access unintended resources such as sensitive, personal or corporate
information.

The Basics of Secure Software Development. Page 28

Your Secure Software Development Partner!

Our development teams and technical teams consist of highly qualified software development

experts and cybersecurity experts who are the perfect combination of unique talents, skills and

experience to lead secure software development projects from start to finish.

To stay ahead, we apply the updated and cutting-edge technology in software development and

information security best practices that will ensure your project will be successful and meet your

expectations and goals.

About Condition Zebra

Condition Zebra is a CREST8 certified and ISO 27001:201312 company that offers Professional

Cybersecurity Solutions and Cybersecurity Training for SMEs in various industries, including

Financial Services (Banks & Insurance), Government Ministries & Agencies, and Government-

linked companies.

If you’re looking to leverage our expertise, that is to get the best solutions that demonstrate the

highest levels of knowledge, skills, and competence, then reach out to us today!

Condition Zebra (M) Sdn Bhd

Level 3-10, Block F, Phileo Damansara 1,

Jalan 16/11 Off Jalan Damansara,

46350 Petaling Jaya, Selangor,

MALAYSIA.

Website: www.condition-zebra.com

Email: info@condition-zebra.com

Phone: +603-7665 2021

 ConditionZebra ConditionZebra

 Condition Zebra (M) Sdn Bhd

 +60122293908 ConditionZebra Condition Zebra

https://www.facebook.com/ConditionZebra
https://www.facebook.com/ConditionZebra
https://www.instagram.com/conditionzebra/
https://www.linkedin.com/company/condition-zebra/mycompany/
https://wa.me/60122293908
https://www.youtube.com/user/conzebra
https://www.linkedin.com/in/condition-zebra/
https://www.instagram.com/conditionzebra/
https://www.linkedin.com/company/condition-zebra/mycompany/
https://wa.me/60122293908
https://www.youtube.com/user/conzebra
https://www.linkedin.com/in/condition-zebra/

The Basics of Secure Software Development. Page 29

Glossary

1. Agile: Agile methodology is a modern approach in project management that is widely used

in software development. Agile Software Development is an alternative to the traditional
sequential process of development, known as “waterfall”. Agile helps with the timely
response to any changes in the project, and corrects the workflow accordingly.

2. Authentication: Authentication is the process of confirming the correctness of the claimed

identity.

3. BSIMM: BSIMM (pronounced “bee simm”) is short for Building Security In Maturity Model.

BSIMM is a study of real-world software security initiatives organized so that you can

determine where you stand with your software security initiative and how to evolve your

efforts over time.

4. Backdoor: A backdoor is a tool installed after a compromise to give an attacker easier

access to the compromised system around any security mechanisms that are in place.

5. Black box security testing: Black box security testing is the attacker approach where

application is tested from the outside-in, with little or no prior knowledge of the application's

internal workings.

6. C++: C++ is a cross-platform language that can be used to create high-performance

applications. C++ was developed by Bjarne Stroustrup, as an extension to the C language.

C++ gives programmers a high level of control over system resources and memory.

7. CRLF: CRLF stands for Carriage Return Linefeed, which is a special sequence of

characters (0x0D 0x0A in hex) used by the HTTP protocol as a line separator. A CRLF

Injection attack occurs when an attacker manages to force the application to return the

CRLF sequence plus the attacker’s supplied data as part of the response headers.

8. CREST: The Council of Registered Ethical Security Testers - is an international

accreditation and certification body, representing and supporting the technical information

security industry.

9. DAST: Dynamic application security testing (DAST) involves conducting simulated attacks

on a running application program to analyze its reaction and discover security vulnerabilities.

10. Debugging: Debugging is a useful tool to help developers get detailed errors message to

investigate and fix issues.

The Basics of Secure Software Development. Page 30

11. HTTP: The Hypertext Transfer Protocol (HTTP) is the foundation of the World Wide Web,

and is used to load web pages using hypertext links.

12. ISO 27001:2013: Specifies the requirements for establishing, implementing, maintaining and

continually improving an information security management system within the context of the

organization.

13. ISO 27034: Offers guidance on information security to those specifying, designing and

programming or procuring, implementing and using application systems, in other words,

business and IT managers, developers and auditors, and ultimately the end-users of ICT.

The aim is to ensure that computer applications deliver the desired or necessary level of

security in support of the organisation’s Information Security Management System,

adequately addressing many ICT security risks.

14. Iterative: Iterative development is a software development approach that breaks the

process of developing a large application into smaller parts. Each part, called “iteration”,

represents the whole development process and contains planning, design, development,

and testing steps. Unlike the Waterfall model, the iterative process adds features one-by-

one, providing a working product at the end of each iteration, and increases functionality

from cycle to cycle.

15. LDAP: The Lightweight Directory Access Protocol (LDAP) is a vendor-neutral application

protocol used to maintain distributed directory info in an organized, easy-to-query manner.

That means it allows you to keep a directory of items and information about them.

16. MFA: Multifactor Authentication, this type of authentication uses two or more factors to

achieve authentication. These factors can include: something the users knows (a password

or a PIN), something the user has (an authentication token, an SMS with a code or a code

generator on the phone/tablet) and/or something the user is (biometric authentication

methods, such as fingerprints or retina scans).

17. ORM: Object-relational mapping (ORM) is a programming technique in which a metadata

descriptor is used to connect object code to a relational database. Object code is written in

object-oriented programming (OOP) languages such as Java or C#. ORM converts data

between type systems that are unable to coexist within relational databases and OOP

languages.

18. OWASP: The Open Web Application Security Project (OWASP) is an international non-profit

organization dedicated to web application security.

The Basics of Secure Software Development. Page 31

19. OWASP SAMM: SAMM (Software Assurance Maturity Model) is used to analyze and

improve the current secure development lifecycle process.

20. OWASP ASVS: The OWASP Application Security Verification Standard (ASVS) Project

provides a basis for testing web application technical security controls and also provides

developers with a list of requirements for secure development.

21. OWASP Proactive Controls: The OWASP Top Ten Proactive Controls 2018 is a list of

security techniques that should be included in every software development project.

22. Penetration Testing: This is a type of attack launched on a network or computer system in

order to identify security vulnerabilities that can be used to gain unauthorized access to the

network’s/system’s features and data. Penetration testing is used to help companies better

protect themselves against cyber attacks.

23. Python: Python is a computer programming language often used to build websites and

software, automate tasks, and conduct data analysis. Python is a general-purpose

language, meaning it can be used to create a variety of different programs and isn’t

specialized for any specific problems.

24. SAST: Static application security testing (SAST) is performed without executing the

application program, but rather inspecting the source code, byte code or application binaries

for any security flaws.

25. Secure Code reviews: Secure code review is a manual or automated process that

examines an application’s source code. The goal of this examination is to identify any

existing security flaws or vulnerabilities.

26. Shift-Left: In the software development lifecycle, this refers to moving towards the planning

and design phase at the earliest stages.

27. SDLC: The Software Development Lifecycle (SDLC) is the usual process used by

organisations to build software from start to finish.

28. SSDLC: Secure Software Development Lifecycle simply means producing software with

security in mind from the ground up. By embedding security practices such as Static

application security testing (SAST), Dynamic application security testing (DAST), threat

modelling, secure code reviews, etc) at each stage of the SSDLC process to produce a

more security focused application software.

The Basics of Secure Software Development. Page 32

29. SQL Injection: This is a tactic that used code injection to attack applications which are data-

driven. The maliciously injected SQL code can perform several actions, including dumping

all the data in a database in a location controlled by the attacker. Through this attack,

malicious hackers can spoof identities, modify data or tamper with it, disclose confidential

data, delete and destroy the data or make it unavailable. They can also take control of the

database completely.

30. VAPT: Vulnerability Assessment and Penetration Testing (VAPT) consists of various types

of security assessment services to discover vulnerabilities in your IT assets and

infrastructures such as networks, firewalls, servers and applications (web/mobile).

31. Waterfall: The waterfall model in software engineering is a traditional and somewhat “old-

fashioned” project management approach. It is called waterfall because it is linear and

sequential. Just like waterfall it always moves forward, not a single step back. Each waterfall

phase has strictly defined goals and deadlines and takes place one after another. The

primary goal of the waterfall method is to gather and make clear all the requirements

upfront, to prevent the development from going ‘downhill’ without the possibility of making

changes.

32. White box security testing: White box security testing is the developer approach where

one is able access the implementation of the software and its fundamental design and

framework.

33. XSS attacks: Cross-site scripting (XSS) is a software vulnerability usually found in Web

applications. This XSS allows online criminals to inject client-side script into pages that other

users view. The cross-site scripting vulnerability can be employed at the same time by

attackers to over-write access controls. This issue can become a significant security risk

unless the network administrator or the website owner doesn't take the necessary security

means.

34. XPATH: XPath is a major element in the XSLT standard. XPath can be used to navigate

through elements and attributes in an XML document.

The Basics of Secure Software Development. Page 33

References

1. "State of Software Security v12: Don’t become complacent, but we’ve come a long way."

Developer-Tech.com. 8 Feb, 2022.

https://www.developer-tech.com/news/2022/feb/08/state-of-software-security-v12-dont-

complacent-but-come-long-way/

2. "How to ensure app security with secure SDLC implementation." Sigma Software. 8 Jul,

2021. https://sigma.software/about/media/how-ensure-app-security-secure-sdlc-implementation

3. "How You Should Approach the Secure Development Lifecycle." Dataversity.net. 12 July,

2019. https://www.dataversity.net/how-you-should-approach-the-secure-development-lifecycle/

4. "What is OWASP SAMM?" OWASPSAMM.org. https://owaspsamm.org/about/

5. "OWASP Top Ten". OWASP.org. https://owasp.org/www-project-top-ten/

6. "Coders Conquer Security OWASP Top 10 API Series - Disabled Security Features/Debug

Features Enabled/Improper Permissions". Secure Code Warrior. 11 Nov, 2020.

https://www.securecodewarrior.com/blog/coders-conquer-security-owasp-top-10-api-series-

disabled-security-features-debug-features-enabled-improper-permissions

7. "A08:2021-Software and Data Integrity Failures". Medium. 22 Sept, 2021.

https://medium.com/@shivam_bathla/a08-2021-software-and-data-integrity-failures-

967a564140a

8. "Coders Conquer Security OWASP Top 10 API Series - Broken Authentication". Secure

Code Warrior. 16 Sept, 2020.

https://www.securecodewarrior.com/blog/coders-conquer-security-owasp-top-10-api-series-

broken-authentication

9. "OWASP Application Security Verification Standard". OWASP.org.

https://owasp.org/www-project-application-security-verification-standard/

10. "OWASP Proactive Controls". OWASP.org.

https://owasp.org/www-project-proactive-controls/

11. "Secure SDLC || Secure Software Development Life Cycle|| SSDLC in Information

Security". UGC NET Competitive Exams.

https://www.youtube.com/watch?v=ojPjMphY1ts

The Basics of Secure Software Development. Page 34

12. "What is SSDLC (Secure Software Development Lifecycle)?" - Syed Shah, Snr Security

Tester.

https://www.youtube.com/watch?v=oOcO2kSttRM

13. "Introduction to Application Security (AppSec)" - Christophe Limpalair.

https://www.udemy.com/course/introduction-to-application-security-appsec/

14. "Agile Software Development". Easternpeak.com.

https://easternpeak.com/definition/agile-software-development/

15. "Iterative Development". Easternpeak.com.

https://easternpeak.com/definition/iterative-development/

16. "Glossary of Security Terms. SANS.org.

https://www.sans.org/security-resources/glossary-of-terms/

17. "BSIMM". bsimm.com.

https://www.bsimm.com/about/faq.html

18. "What is Black-box Security Testing?". Acunetix.

https://www.acunetix.com/blog/articles/black-box-security-testing/

19. "C++ Introduction". w3schools.com.

https://www.w3schools.com/cpp/cpp_intro.asp

20. "CRLF Injection". secapps.com.

https://secapps.com/vulndb/crlf-injection

21. "Trust and Assurance".

https://www.crest-approved.org/

22. "What is HTTP? Cloudflare.com.

https://www.cloudflare.com/learning/ddos/glossary/hypertext-transfer-protocol-http/

23. "ISO/IEC 27001:2013

Information technology — Security techniques — Information security management systems —

Requirements".

https://www.iso.org/standard/54534.html

24. "ISO/IEC 27034:2011+ — Information technology — Security techniques — Application

security".

https://www.iso27001security.com/html/27034.html

The Basics of Secure Software Development. Page 35

25. "Cyber Security Glossary". HEIMDAL Security.

https://heimdalsecurity.com/glossary#M

26. "Lightweight Directory Access Protocol (LDAP)".

https://www.extrahop.com/resources/protocols/ldap/

27. "Object-Relational Mapping (ORM)".

https://www.techopedia.com/definition/24200/object-relational-mapping--orm

28. "What is Python Used For? A Beginner’s Guide.

https://www.coursera.org/articles/what-is-python-used-for-a-beginners-guide-to-using-python

29. "Secure Code Review".

https://www.synopsys.com/glossary/what-is-code-review.html

30. "XML and XPath". w3schools.com.

https://www.w3schools.com/xml/xml_xpath.asp

The Basics of Secure Software Development. Page 36

 www.condition-zebra.com

Copyright © 2022 Condition Zebra (M) Sdn Bhd. All rights reserved.

www.condition-zebra.com

